

## **BK BIRLA CENTRE FOR EDUCATION**

SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

B K BIRLA CENTRI FOR EDUCATION (Sarala Birla Group of Schools)

## PRE-BOARD 1 EXAMINATION 2024-25 **MARKING KEY** MATHEMATICS (041)



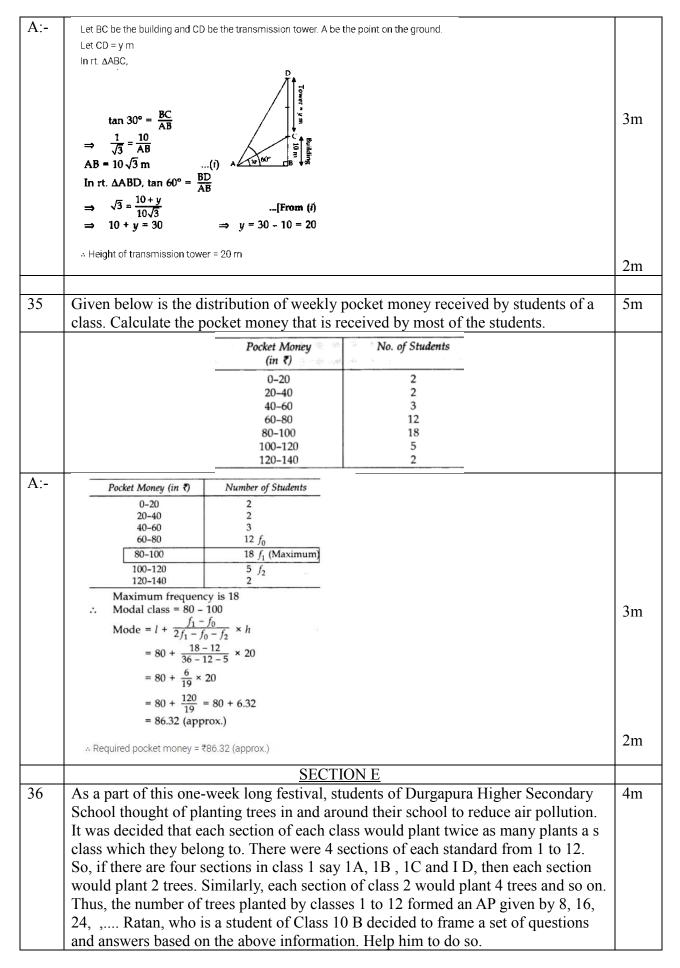
|          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                |                                                                                                         |          |
|----------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|
| Class    |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        | Duration: 3 H                                                                                           | rs       |
| Date:    | 20/11/24                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        | Max. Marks:                                                                                             | 80       |
| Nam      |                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        | Exam RNo:                                                                                               |          |
|          | eral Instructions:                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                         |          |
|          | nis Question Paper ha                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                         |          |
|          | ection A has 20 MCQ                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                         |          |
|          | ection B has 5 question                                                                                          | , 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                        |                                                                                                         |          |
|          | ection C has 6 question                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                         |          |
|          | ection D has 4 question                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                         |          |
|          |                                                                                                                  | ased integrated unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s of assessment (04 r                                                                                                  | narks each) with                                                                                        |          |
|          | ıb-parts.                                                                                                        | 1 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                        |                                                                                                         |          |
|          | ~ .                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n internal choice in 2                                                                                                 | - /                                                                                                     |          |
|          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | have been provided.                                                                                                    | An internal choice                                                                                      |          |
|          | s been provided in th                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        | . 1.0                                                                                                   |          |
|          | U                                                                                                                | rever required. Take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a = \frac{22}{7}$ wherever r                                                                                          | equired if not                                                                                          |          |
| sta      | ated.                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                         |          |
| 1        | 10 . 01.                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ECTION A                                                                                                               | 4 4 1                                                                                                   | 1        |
| 1.       |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | riables is inconsistent                                                                                                | t, then the lines                                                                                       | 1m       |
|          | represented by two                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        | (1) C(1                                                                                                 |          |
|          | (a) intersecting                                                                                                 | (b) parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c) always                                                                                                             | (d) none of these                                                                                       |          |
| 2        | The distance of the                                                                                              | $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | coincident                                                                                                             |                                                                                                         | 1        |
| 2.       |                                                                                                                  | e point $(5, -4)$ from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        | (d) none of these                                                                                       | 1m       |
| 3.       | (a) 5 units                                                                                                      | (b) 4 units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (c) 1 unit                                                                                                             | (d) none of these                                                                                       | 1m       |
| э.       |                                                                                                                  | , <i>DE</i>    <i>B</i> C, <i>AD</i> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2  cm, B D - 2.5  cm                                                                                                  | h and $A E = 3.2$ cm, then                                                                              | 1111     |
|          | A C is equal to                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                         |          |
|          |                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $m \bigwedge^{A} 3.2 \text{ cm}$                                                                                       |                                                                                                         |          |
|          |                                                                                                                  | 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                        |                                                                                                         |          |
|          |                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $E = \frac{1}{2}$                                                                                                      |                                                                                                         |          |
|          |                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                         |          |
|          |                                                                                                                  | 1<br>2.5 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                        |                                                                                                         |          |
|          |                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                         |          |
|          | (a) 2.4cm                                                                                                        | 2.5 cm/<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        | (d) none of these                                                                                       |          |
| 4.       | (a) 2.4cm<br>( $\cos^4 x - \sin^4 x$ )                                                                           | 2.5 cm<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                                                                                                                      | (d) none of these                                                                                       | 1m       |
| 4.       | $(\cos^4 x - \sin^4 x)$                                                                                          | $\begin{array}{c} 2.5 \text{ cm} \\ B \\ \hline B \\ B \\ \hline B \\ B \\ \hline B \\ $ | E<br>(c) 4cm                                                                                                           | /                                                                                                       | 1m       |
|          | $\frac{(\cos^4 x - \sin^4 x)}{(a) 2\sin^2 x - 1}$                                                                | $\begin{array}{c} 2.5 \text{ cm} \\ B \\ \hline (b) 3 \text{ cm} \\ \text{is equal to} \\ \hline (b) 1 - 2 \cos^2 x \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{E}{C}$ (c) 4cm (c) sin <sup>2</sup> x - cos <sup>2</sup> x                                                      | (d) $2\cos^2 x - 1$                                                                                     |          |
| 4.       | $\frac{(\cos^4 x - \sin^4 x)}{(a) 2\sin^2 x - 1}$<br>If probability of su                                        | $\begin{array}{c} 2.5 \text{ cm} \\ B \\ \hline \\ (b) 3 \text{ cm} \\ \text{is equal to} \\ \hline \\ (b)1 - 2 \cos^2 x \\ \text{access is 0.9\%, then} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E (c) 4cm (c) sin <sup>2</sup> x - cos <sup>2</sup> x probability of failure                                           | (d) 2cos <sup>2</sup> x – 1<br>e is                                                                     | 1m<br>1m |
| 5.       | $\frac{(\cos^4 x - \sin^4 x)}{(a) 2\sin^2 x - 1}$<br>If probability of su<br>(a) 0.01 %                          | $\begin{array}{c} 2.5 \text{ cm} \\ B \\ \hline (b) 3 \text{ cm} \\ \hline is equal to \\ \hline (b) 1 - 2\cos^2 x \\ \hline access is 0.9\%, then \\ \hline (b) 0.1\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{E}{C}$ (c) 4cm (c) sin <sup>2</sup> x - cos <sup>2</sup> x probability of failure (c) 99.1%                     | $\begin{array}{c} \textbf{(d) } 2\cos^2 x - 1 \\ \text{e is} \\ \textbf{(d) none of these} \end{array}$ |          |
|          | $\frac{(\cos^4 x - \sin^4 x)}{(a) 2\sin^2 x - 1}$<br>If probability of su<br>(a) 0.01 %<br>If 1 is a zero of the | $\begin{array}{c} 2.5 \text{ cm} \\ B \\ \hline (b) 3 \text{ cm} \\ \hline is equal to \\ \hline (b) 1 - 2\cos^2 x \\ \hline access is 0.9\%, then \\ \hline (b) 0.1\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{E}{C}$ (c) 4cm (c) sin <sup>2</sup> x - cos <sup>2</sup> x probability of failure (c) 99.1%                     | (d) 2cos <sup>2</sup> x – 1<br>e is                                                                     | 1m       |
| 5.       | $\frac{(\cos^4 x - \sin^4 x)}{(a) 2\sin^2 x - 1}$ If probability of su (a) 0.01 % If 1 is a zero of the of a.    | 2.5 cm<br>B<br>(b) 3cm<br>is equal to<br>(b) 1 - 2cos <sup>2</sup> x<br>access is 0.9%, then<br>(b) 0.1%<br>e polynomial $p(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E$ (c) 4cm (c) sin <sup>2</sup> x - cos <sup>2</sup> x probability of failure (c) 99.1% $= a x^{2} - 3(a - 1) x$      | (d) 2cos <sup>2</sup> x – 1<br>e is<br>(d) none of these<br>– 1, then find the value                    | 1m       |
| 5.<br>6. | $(\cos^{4}x - \sin^{4}x)$ (a) $2\sin^{2}x-1$ If probability of su (a) $0.01\%$ If 1 is a zero of the of a. (a) 1 | 2.5 cm<br>B<br>(b) 3cm<br>is equal to<br>(b) 1 - $2\cos^2 x$<br>access is 0.9%, then<br>(b) 0.1%<br>e polynomial $p(x)$<br>(b) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $E$ (c) 4cm (c) sin <sup>2</sup> x - cos <sup>2</sup> x probability of failure (c) 99.1% $a x^{2} - 3(a - 1) x$ (c) -1 | (d) $2\cos^2 x - 1$ e is(d) none of these- 1, then find the value(d) none of these                      | 1m<br>1m |
| 5.       | $(\cos^{4}x - \sin^{4}x)$ (a) $2\sin^{2}x-1$ If probability of su (a) $0.01\%$ If 1 is a zero of the of a. (a) 1 | 2.5 cm<br>B<br>(b) 3cm<br>is equal to<br>(b) 1 - $2\cos^2 x$<br>access is 0.9%, then<br>(b) 0.1%<br>e polynomial $p(x)$<br>(b) 2<br>x -axis such that its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $E$ (c) 4cm (c) sin <sup>2</sup> x - cos <sup>2</sup> x probability of failure (c) 99.1% $a x^{2} - 3(a - 1) x$ (c) -1 | (d) 2cos <sup>2</sup> x – 1<br>e is<br>(d) none of these<br>– 1, then find the value                    | 1m       |

CL\_X\_MK\_PRE\_BOARD\_1\_MATHEMATICS\_QP\_Page 1 | 12

| 8.  | In a single throw of a pair of dice, the probability of getting the sum as a perfect square is                                                  | 1m   |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
|     | (a) 7/36 (b) 5/36 (c) 8/36 (d) none of these                                                                                                    |      |  |  |  |
| 9.  | Determine k for which the system of equations has infinite solutions: $4x + y = 3$                                                              | 1m   |  |  |  |
|     | and $8x + 2y = 5k$ .                                                                                                                            | -    |  |  |  |
| 10  | (a) $5/6$ (b) $6/5$ (c) $4/5$ (d) none of these $5\sin^2 30^0 + \cos^2 45^0 - 4\tan^2 30^0$ is equal to                                         | 1    |  |  |  |
| 10. |                                                                                                                                                 | 1m   |  |  |  |
| 11  | (a) $5/6$ (b) $2/3$ (c) $5/12$ (d) none of these                                                                                                | 1    |  |  |  |
| 11. | The sum $(-6) + (0) + (6) + \cdots$ up to 13th term is                                                                                          | 1m   |  |  |  |
| 10  | (a) 390 (b) 1380 (c) 378 (d) none of these                                                                                                      | 1    |  |  |  |
| 12. | From a point $Q$ , the length of the tangent to a circle is 12 cm and the distance of $Q$ from the centre is 15 cm. The radius of the circle is | 1m   |  |  |  |
|     | (a) 9 cm (b) 12 cm (c) 15 cm (d) none of these                                                                                                  |      |  |  |  |
| 13  | The mean of first ten odd natural numbers is                                                                                                    | 1m   |  |  |  |
| 15  | (a) 5(b) 10(c) 19(d) none of these                                                                                                              | 1111 |  |  |  |
| 14  | If LCM of a and 18 is 36 and HCF of a and 18 is 2, then $a =$                                                                                   | 1m   |  |  |  |
| 17  | (a) 2 (b) 3 (c) 4 (d) none of these                                                                                                             | 1111 |  |  |  |
| 15  | In the given figure, $OA = 4$ cm, $OB = 6$ cm, $OD = 5$ cm and $OC = 7.5$ cm, then                                                              | 1m   |  |  |  |
| 15  | by which of the following similarity criterion $\triangle A O D \sim \triangle B O C$ ?                                                         | 1111 |  |  |  |
|     |                                                                                                                                                 |      |  |  |  |
|     | D B                                                                                                                                             |      |  |  |  |
|     | (a) AA(b) SSS(c) SAS(d) none of these                                                                                                           |      |  |  |  |
| 16  | The roots of the equation $f(x) = x^2 - 2\sqrt{2x} - 16$ are                                                                                    | 1m   |  |  |  |
|     | (a) $4\sqrt{2}, -2\sqrt{2}$ (b) $-4\sqrt{2}, -2\sqrt{2}$ (c) $-4\sqrt{2}, 2\sqrt{2}$ (d) none of these                                          |      |  |  |  |
| 17  | The area of a circle is $38.5 \text{ cm}^2$ . The circumference of the circle is                                                                | 1m   |  |  |  |
|     | (a) 6.2 cm (b) 12.1 cm (c) 22 cm (d) none of these                                                                                              |      |  |  |  |
| 18  | The volume of two spheres are in ratio 64:27, then ratio of their areas is                                                                      | 1m   |  |  |  |
|     | (a) 8:9 (b) 16:9 (c) 8:3 (d) none of these                                                                                                      |      |  |  |  |
|     |                                                                                                                                                 |      |  |  |  |
| 19  | Assertion: The curved surface area of a cone of base radius 3 cm and height 4 cm is $15 \pi \text{ cm}^2$                                       | 1m   |  |  |  |
|     | Reason: Volume of cone = $\pi r^2 h$                                                                                                            |      |  |  |  |
|     | (a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).                                    |      |  |  |  |
|     | (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct                                                                  |      |  |  |  |
|     | explanation of Assertion (A).                                                                                                                   |      |  |  |  |
|     | 1                                                                                                                                               |      |  |  |  |
|     | <ul> <li>(c) Assertion (A) is true and Reason (R) is false.</li> <li>(d) Assertion (A) is false and Reason (R) is true.</li> </ul>              |      |  |  |  |
|     | (d) Assertion (A) is faise and Reason (R) is true.                                                                                              |      |  |  |  |
| 20  | Accortion $5 + 12 + 21 + \dots + 101 - 2220$                                                                                                    | 1.   |  |  |  |
| 20  | Assertion: $5 + 13 + 21 + + 181 = 2239$                                                                                                         | 1m   |  |  |  |
|     | Reason : Sum of n terms in an A.P is $n(a+a_n)/2$                                                                                               |      |  |  |  |
|     | (a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct surface of Assertion $(A)$                                       |      |  |  |  |
|     | explanation of Assertion (A).<br>(b) Both Assertion (A) and Basson (B) are true but Basson (B) is not a sorrest                                 |      |  |  |  |
|     | (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A)                                     |      |  |  |  |
|     | explanation of Assertion (A).                                                                                                                   |      |  |  |  |

|     | <ul> <li>(c) Assertion (A) is true and Reason (R) is false.</li> <li>(d) Assertion (A) is false and Reason (R) is true.</li> </ul>                                                                                                  |    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | SECTION B                                                                                                                                                                                                                           |    |
| 21  | Prove that $3 + 2\sqrt{3}$ is an irrational number.                                                                                                                                                                                 | 2m |
|     | OR                                                                                                                                                                                                                                  |    |
|     | Prove that $\sqrt{3}$ is irrational.                                                                                                                                                                                                |    |
| A:- | Let us assume to the contrary, that $3 + 2\sqrt{3}$ is rational.<br>So that we can find integers a and b (b $\neq$ 0).<br>Such that $3 + 2\sqrt{3} = \frac{a}{b}$ , where a and b are coprime.<br>Rearranging the equations, we get |    |
|     | $2\sqrt{3} = \frac{a}{b} - 3 = \frac{a - 3b}{b}$ $\sqrt{3} = \frac{a - 3b}{2b} = \frac{a}{2b} - \frac{3b}{2b}$ $\sqrt{3} = \frac{a}{2b} - \frac{3}{2}$                                                                              | 1m |
|     | Since a and b are integers, we get $\frac{a}{2b} - \frac{3}{2}$ is rational and so $\sqrt{3}$ is rational.<br>But this contradicts the fact that $\sqrt{3}$ is irrational.<br>So we conclude that $3 + 2\sqrt{3}$ is irrational.    | 1m |
| 22  | If $\sin \alpha = 1/2$ , then show that $(3\cos \alpha - 4\cos^3 \alpha) = 0$ .                                                                                                                                                     | 2m |
| A:- | Consider a $\triangle ABC$ in which $\angle B = 90^{\circ}$ and $\angle BAC = \alpha$ .<br>$\therefore \sin \alpha = \frac{BC}{AC} = \frac{1}{2}$                                                                                   |    |
|     | Let $BC = k$ units and $AC = 2k$ units, where k is a positive number.                                                                                                                                                               |    |
|     | By Pythagoras theorem, we have                                                                                                                                                                                                      |    |
|     | $AC^2 = AB^2 + BC^2$                                                                                                                                                                                                                |    |
|     | $\Rightarrow AB^{2} = AC^{2} - BC^{2} = 4k^{2} - k^{2} = 3k^{2}$                                                                                                                                                                    | 1m |
|     | $\Rightarrow AB = \sqrt{3}k$ units                                                                                                                                                                                                  |    |
|     | $\therefore \cos \alpha = \frac{AB}{AC} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$                                                                                                                                                |    |
|     | Now, L.H.S. = $(3\cos\alpha - 4\cos^3\alpha) = \frac{3\sqrt{3}}{2} - 4 \times \frac{3\sqrt{3}}{8} = 0 = \text{R.H.S.}$                                                                                                              | 1m |
| 23  | If $\triangle ABC \sim \triangle PQR$ , $AB = 4$ cm, $PQ = 10$ cm, $QR = 15$ cm, $PR = 20$ cm,<br>then find the perimeter of $\triangle ABC$ .<br>OR                                                                                | 2m |
|     | In $\triangle D E F$ , $A B \parallel E F$ such that $A D = 6$ cm, $A E = 18$ cm and $B F = 24$ cm.<br>Find the length of $D B$ .                                                                                                   |    |
|     |                                                                                                                                                                                                                                     |    |
|     |                                                                                                                                                                                                                                     |    |
|     |                                                                                                                                                                                                                                     |    |
|     |                                                                                                                                                                                                                                     |    |
|     |                                                                                                                                                                                                                                     |    |

|     | Circa A ABC A DOD with $AD = A$ are and $DO = 10$ are                                                                                            | 1           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| A:- | Given, $\triangle ABC \sim \triangle PQR$ with $AB = 4$ cm and $PQ = 10$ cm                                                                      |             |
|     | Since, $\triangle ABC \sim \triangle PQR$                                                                                                        |             |
|     | $\therefore \ \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$                                                                                     |             |
|     |                                                                                                                                                  |             |
|     | $\Rightarrow \frac{4}{10} = \frac{BC}{15} = \frac{AC}{20}$                                                                                       |             |
|     | 10 15 20                                                                                                                                         |             |
|     | A<br>B<br>B<br>C<br>Q<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                                          | 1m          |
|     | $\Rightarrow BC = \frac{4 \times 15}{10} = 6 \text{ cm}$                                                                                         |             |
|     | and $AC = \frac{4 \times 20}{10} = 8 \text{ cm}$                                                                                                 |             |
|     | $\therefore \text{ Perimeter of } \triangle ABC = AB + BC + AC$                                                                                  |             |
|     | = 4 + 6 + 8 = 18 cm                                                                                                                              |             |
|     | Hence, perimeter of $\triangle ABC$ is 18 cm.                                                                                                    |             |
|     |                                                                                                                                                  | 1m          |
| 24  | Prove that lengths of tangents from an external point to the circle are equal.                                                                   | 2m          |
| A:- |                                                                                                                                                  |             |
|     |                                                                                                                                                  |             |
|     | $ m 	extsf{OQP}$ and $ m 	extsf{ORP}$ are right angles, because these are angles between                                                         |             |
|     | the radii and tangents,                                                                                                                          |             |
|     | Now in right triangles $\triangle$ OQP and $\triangle$ ORP,                                                                                      |             |
|     | OQ = OR (Radii of the same circle)                                                                                                               | 1m          |
|     | OP = OP (Common)                                                                                                                                 |             |
|     | Therefore, △ OQP ≅ △ ORP (RHS)                                                                                                                   |             |
|     | This gives PQ = PR                                                                                                                               | 1m          |
| 25  | If $\alpha$ and $\beta$ are zeroes of the polynomial $2x^2 - 5x + 7$ , then find the value of $\alpha^{-1} + \beta^{-1}$ .                       | 2m          |
| A:- | Here $p(x) = 2x^2 - 5x + 7$                                                                                                                      | <u>~111</u> |
|     | α, $β$ are zeroes of $p(x)$                                                                                                                      |             |
|     | $\Rightarrow \qquad \alpha + \beta = \frac{-(-5)}{2} = \frac{5}{2} \text{ and } \alpha\beta = \frac{7}{2}$                                       | 1m          |
|     | $\therefore  \alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta} = \frac{5/2}{7/2} = \frac{5}{7}$ | 1m          |
|     | SECTION C                                                                                                                                        |             |
| 26  | In a school, there are two Sections A and B of class X. There are 48 students in                                                                 | 3m          |
|     | Section A and 60 students in Section B. Determine the least number of books                                                                      |             |
|     | required for the library of the school so that the books can be distributed equally                                                              |             |
|     | among all students of each section.                                                                                                              |             |
|     |                                                                                                                                                  |             |


|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A:- | Since the books are to be distributed equally among the students of Section A and Section B. therefore, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|     | number of books must be a multiple of 48 as well as 60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     | Hence, required num-ber of books is the LCM of 48 and 60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     | $48 = 2^4 \times 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     | $60 = 2^2 \times 3 \times 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.m  |
|     | $LCM = 2^4 \times 3 \times 5 = 16 \times 15 = 240$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1m   |
|     | Hence, required number of books is 240.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     | <u>2   48</u> 2   60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|     | 2 24 2 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     | 2 12 3 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     | 2 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2m   |
| 27  | Represent the following pair of equations graphically and write the coordinates of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3m   |
| 21  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5111 |
|     | points where the lines intersect y-axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|     | x + 3y = 6 and $2x - 3y = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| A:- | x + 3y = 6   $2x - 3y = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 11. | $\Rightarrow x = 6 - 3y \qquad \Rightarrow 2x = 12 + 3y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | $\Rightarrow x = \frac{12 + 3y}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     | x 6 3 0 x 0 6 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | y 0 1 2 y -4 0 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |
|     | (6, 0), (3, 1), (0, 2) $(0, -4), (6, 0), (3, 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1m   |
|     | here the section of t |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     | C(0, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     | (3,1) A 25-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     | 6.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | 34863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|     | 3,-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | B(0,-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2m   |
|     | Next and a set of a desire of an an and the set of the Annual of a set of the Annual of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2111 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 28  | Prove that:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3m   |
|     | $\frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta} + \frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = \frac{2}{2\sin^2\theta - 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|     | $\frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|     | $\sin\theta + \cos\theta  \sin\theta - \cos\theta  2\sin^2\theta - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|     | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | Prove that:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|     | $\sin \theta = 1 \log \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     | $\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 2 \operatorname{cosec} \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     | $1 \pm \cos \theta$ i $\sin \theta$ i $2 \cos \theta$ i $\sin \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| A:- | <b>L.H.S.</b> = $\frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta} + \frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     | $\sin\theta + \cos\theta  \sin\theta - \cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|     | $(\sin\theta - \cos\theta)^2 + (\sin\theta + \cos\theta)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|     | $= \frac{(\sin\theta + \cos\theta) + (\sin\theta + \cos\theta)}{(\sin\theta + \cos\theta)(\sin\theta - \cos\theta)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | $\sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta + \sin\theta^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2m   |
|     | $+\cos^2\theta + 2\sin\theta\cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     | $= \frac{1}{\sin^2\theta - \cos^2\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | $\frac{1+1}{\sin^2\theta - (1-\sin^2\theta)} = \frac{2}{\sin^2\theta - 1 + \sin^2\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     | $\sin^2\theta - (1 - \sin^2\theta) \sin^2\theta - 1 + \sin^2\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1m   |
|     | $= \frac{2}{2\sin^2\theta - 1} = \text{R.H.S.} \qquad \dots \text{(Hence proved)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|     | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | CL_X_MK_PRE_BOARD_1_MATHEMATICS_QP_Page 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |

| r   |                                                                                                              | 1  |
|-----|--------------------------------------------------------------------------------------------------------------|----|
|     | <b>L.H.S.</b> = $\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta}$                          |    |
|     | $= \frac{\sin^2 \theta + (1 + \cos \theta)^2}{(1 + \cos \theta) \sin \theta}$                                |    |
|     | $= \frac{\sin^2 \theta + 1 + \cos^2 \theta + 2 \cos \theta}{(1 + \cos \theta) \sin \theta}$                  |    |
|     | $= \frac{1+1+2\cos\theta}{(1+\cos\theta)\sin\theta} \qquad \dots [\because \sin^2\theta + \cos^2\theta = 1]$ |    |
|     | $= \frac{2+2\cos\theta}{(1+\cos\theta)\sin\theta} = \frac{2(1+\cos\theta)}{(1+\cos\theta)\sin\theta}$        |    |
|     |                                                                                                              |    |
|     | $= \frac{2}{\sin \theta} = 2 \operatorname{cosec} \theta$<br>= R.H.S(Hence proved)                           |    |
|     |                                                                                                              |    |
| 29  | The incircle of an isosceles triangle ABC, in which $AB = AC$ , touches the sides BC,                        |    |
|     | CA and AB at D, E and F respectively. Prove that BD = DC.                                                    | 3m |
| A:- | Given: The incircle of $\triangle$ ABC touches the sides BC, CA and AB at D, E and F respectively.           |    |
|     |                                                                                                              |    |
|     |                                                                                                              |    |
|     | B C C                                                                                                        |    |
|     | AB = AC                                                                                                      |    |
|     | To prove: BD = CD                                                                                            |    |
|     | Proof: AF = AE(i)                                                                                            |    |
|     | BF = BD(ii)<br>CD = CE(iii)                                                                                  | 2m |
|     | Adding (i), (ii) and (iii), we get                                                                           |    |
|     | AF + BF + CD = AE + BD + CE                                                                                  |    |
|     | $\Rightarrow AB + CD = AC + BD$                                                                              |    |
|     | But AB = AC[Given<br>∴ CD = BD                                                                               | 1m |
| 30  | The sum of the radius of base and height of a solid right circular cylinder is 37 cm.                        | 3m |
|     | If the total surface area of the solid cylinder is 1628 sq. cm, find the volume of the                       |    |
| A:- | cylinder.                                                                                                    |    |
| A   | Let the radius and height of cylinder be r and h respectively<br>r + h = 37 cm(i) [Given                     |    |
|     | Total surface area of cylinder = 1,628 cm <sup>2</sup>                                                       |    |
|     | $2\pi r(r + h) = 1,628$                                                                                      |    |
|     | ⇒ 2πr(37) = 1,628                                                                                            |    |
|     | $\Rightarrow 2\pi r = \frac{1,628}{37} = 44 \implies 2 \times \frac{22}{7} \times r = 44$                    |    |
|     |                                                                                                              | 2m |
|     | $\Rightarrow r = \frac{44 \times 7}{2 \times 22} = 7 \text{ cm}$                                             |    |
|     | From (i), $7 + h = 37$<br>$\Rightarrow h = 37 - 7 = 30 \text{ cm}$                                           |    |
|     | Volume of cylinder = $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 30$                                  |    |
|     | $= 4,620 \text{ cm}^3$                                                                                       | 1. |
|     | - <del>1</del> ,020 (m                                                                                       | 1m |
|     |                                                                                                              |    |
|     |                                                                                                              |    |
| 31  | Three distinct coins are tossed together. Find the probability of getting                                    | 3m |
|     | (i) at least 2 heads                                                                                         |    |
|     | (ii) at most 2 heads.                                                                                        |    |
|     | Or                                                                                                           |    |

|     | A box consists of 100 shirts of which 88 are good, 8 have minor defects and 4 have<br>major defects. Ramesh, a shopkeeper will buy only those shirts which are good but<br>'Kewal another shopkeeper will not buy shirts with major defects. A shirt is taken<br>out of the box at random. What is the probability that:<br>(i) Ramesh will buy the selected shirt?<br>(ii) 'Kewal will buy the selected shirt? |      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A:- | Total number of possible outcomes = 21 = 23 = 8<br>(HHH, TIT, HHT, THH, THT, HTH, HTT)<br>(i) Possible outcomes of at least two heads = 4<br>(HHT, THH, HHH, HTH)<br>$\therefore$ P(at least two heads) = $\frac{4}{8} = \frac{1}{2}$<br>(ii) Possible outcomes of at most two heads = 7<br>(HHT, TTT, THH, THT, HTH, HTT)<br>$\therefore$ P(at most two heads) = $\frac{7}{8}$                                 | 1.5m |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5m |
|     | Or<br>$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                    | 1.5m |
|     | SECTION D                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| 32  | A journey of 192 km from a town A to town B takes 2 hours more by a ordinary<br>passenger train than a super fast train. If the speed of the faster train is 16 km/h<br>more, find the speeds of the faster and the passenger train.<br>Or<br>If $x = 2/3$ and $x = -3$ are roots of the quadratic equation $ax^2 + 7x + b = 0$ , find the<br>values of a and b.                                                | 5m   |

|     | Let the speed of passanger train be v kro/b                                                                                                                                                                                       |    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A:- | Let the speed of passenger train be x km/h.<br>Then, speed of faster train = $(x + 16)$ km/h                                                                                                                                      |    |
|     | According to question:                                                                                                                                                                                                            |    |
|     | Time taken to complete the journey by faster train $(t_1) = \frac{192}{x+16}$ hours and time taken by passenger train $(t_2)$                                                                                                     |    |
|     | $=\frac{192}{x}$                                                                                                                                                                                                                  |    |
|     | According to question,                                                                                                                                                                                                            |    |
|     | $\therefore \frac{192}{x} - \frac{192}{x+16} = 2$                                                                                                                                                                                 |    |
|     |                                                                                                                                                                                                                                   | 2m |
|     | $\Rightarrow  \frac{192[x+16-x]}{x^2+16x} = \frac{2}{1}$                                                                                                                                                                          |    |
|     | $\Rightarrow \qquad \frac{192 \times 16}{x^2 + 16x} = \frac{2}{1}$                                                                                                                                                                |    |
|     | $\Rightarrow \qquad x^2 + 16x = \frac{192 \times 16}{2}$                                                                                                                                                                          |    |
|     | $\Rightarrow$ = 192 × 8                                                                                                                                                                                                           |    |
|     | $\Rightarrow x^2 + 16x - 1536 = 0$                                                                                                                                                                                                | 2  |
|     |                                                                                                                                                                                                                                   | 3m |
|     | X = 32  km/hr                                                                                                                                                                                                                     |    |
|     | $Or$ We have, $ax^2 + 7x + b = 0$                                                                                                                                                                                                 |    |
|     | Here 'a' = a, 'b' = 7, 'c' = b                                                                                                                                                                                                    |    |
|     | Now, $\alpha = \frac{2}{3}$ and $\beta = -3$ [Given                                                                                                                                                                               |    |
|     | $c_{\text{rest}} = \frac{-b}{3}   \mathbf{p}_{\text{rest}} + c_{\text{rest}} = \frac{c}{3}$                                                                                                                                       |    |
|     | Sum or roots = $\frac{a}{a}$ Product or roots = $\frac{a}{a}$                                                                                                                                                                     | 2  |
|     | Sum of roots = $\frac{-b}{a}$<br>$(\alpha + \beta) = \frac{-7}{a}$<br>$\frac{2}{3} + (-3) = \frac{-7}{a}$<br>Product of roots = $\frac{c}{a}$<br>$(\alpha \times \beta) = \frac{b}{a}$<br>$\frac{2}{3} \times (-3) = \frac{b}{a}$ | 3m |
|     | $\frac{2}{3} + (-3) = \frac{-7}{a}$ $\frac{2}{3} \times (-3) = \frac{b}{a}$                                                                                                                                                       |    |
|     | $\frac{2-9}{3} = \frac{-7}{a} \qquad -2 = \frac{b}{3} \qquad[From (i)]$                                                                                                                                                           |    |
|     | $\frac{-7}{3} = \frac{-7}{a} = a = 3$ $b = -6$                                                                                                                                                                                    |    |
|     | $\therefore a = 3, b = -6$                                                                                                                                                                                                        | 2m |
|     |                                                                                                                                                                                                                                   |    |
| 33  | In given figure, $EB \perp AC$ , $BG \perp AE$ and $CF \perp AE$                                                                                                                                                                  | 5m |
|     | Prove that:                                                                                                                                                                                                                       |    |
|     | (a) $\Delta ABG \sim \Delta DCB$                                                                                                                                                                                                  |    |
|     | (b) BC/BD=BE/BA                                                                                                                                                                                                                   |    |
|     |                                                                                                                                                                                                                                   |    |
|     | F                                                                                                                                                                                                                                 |    |
|     |                                                                                                                                                                                                                                   |    |
|     | $\times$ $\vee$                                                                                                                                                                                                                   |    |
|     |                                                                                                                                                                                                                                   |    |
|     |                                                                                                                                                                                                                                   |    |
|     | B                                                                                                                                                                                                                                 |    |
|     | Or                                                                                                                                                                                                                                |    |
|     |                                                                                                                                                                                                                                   |    |
|     | Prove that if a line is drawn parallel to one side of a triangle to intersect the other<br>two sides in distinct points, the other two sides are divided in the same ratio                                                        |    |
|     | two sides in distinct points, the other two sides are divided in the same ratio.                                                                                                                                                  |    |
|     |                                                                                                                                                                                                                                   | 1  |

| ٨٠  | Civen ED + AC DO + AE and CE + AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A:- | Given: EB $\perp$ AC, BG $\perp$ AE and CF $\perp$ AE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|     | To prove: (a) $\Delta ABG = \Delta DCB$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     | (b) $\frac{BC}{BD} = \frac{BE}{BA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     | Proof: (a) In $\triangle$ ABG and $\triangle$ DCB,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|     | ∠2 = ∠5 [each 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|     | $\angle 6 = \angle 4 \dots$ [corresponding angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|     | $\therefore$ ΔABG ~ ΔDCB [By AA similarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|     | (Hence Proved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|     | $\therefore \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|     | (b) In $\triangle ABE$ and $\triangle DBC$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2m   |
|     | $\ge 1 = \ge 3 \dots (\text{proved above})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | $ ightarrow$ ABE = $ ightarrow$ 5 [each is 90°, EB $\perp$ AC (Given)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     | $\Delta ABE \sim \Delta DBC \dots$ [By AA similarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|     | $\frac{BC}{BD} = \frac{BE}{BA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     | [In $\sim \Delta s$ , corresponding sides are proportional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|     | $\therefore \frac{BC}{BD} = \frac{BE}{BA}$ (Hence Proved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3m   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|     | Given: In $\triangle ABC$ , DE    BC.<br>To prove: $\frac{AD}{DB} = \frac{AE}{BC}$<br>Const.: Draw EM 1 AD and DN 1 AE. Join B to E and C to D.<br>Proof: In $\triangle ADE$ and $\triangle BDE$ ,<br>$\frac{ar(\triangle ADE)}{ar(\triangle BDE)} = \frac{\frac{1}{2} \times AD \times EM}{\frac{1}{2} \times DB \times EM} = \frac{AD}{DB}$ (i) [Area of $\triangle = \frac{1}{2} \times$ base x corresponding altitude<br>In $\triangle ADE$ and $\triangle CDE$ ,<br>$\frac{ar(\triangle ADE)}{ar(\triangle CDE)} = \frac{\frac{1}{2} \times AE \times DN}{\frac{1}{2} \times EC \times DN} = \frac{AE}{BC}$<br>$\therefore$ DE    BC[Given<br>$\therefore$ ar( $\triangle BDE$ ) = ar( $\triangle CDE$ )<br>[: As on the same base and between the same parallel sides are equal in area<br>From (i), (ii) and (iii), | 3m   |
|     | $\frac{AD}{DB} = \frac{AE}{EC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2m   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 34  | From a point on the ground, the angles of elevation of the bottom and top of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5m   |
| J+  | transmission tower fixed at the top of a 10 m high building are 30° and 60° respectively. Find the height of the tower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5111 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |



|     | <ul> <li>(i) Find the total number of trees planted by class 10 students of all the sections together.<br/>Or<br/>Write down expression to find nth term from end of an A.P.</li> <li>(ii) Also find the total number of trees planted by students of Ratan's class alone.</li> <li>(iii) The members of the Nature Club of the School decided to find the total number of trees planted by the students of the school altogether. Help them to do so.</li> </ul>                                                                                                                                                                                                                                                |                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| A:- | (i) 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1m             |
|     | Or $ln=l-(n-1)d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|     | (ii) 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1m<br>2m       |
| 37  | (iii) 624<br>In order to conduct Sports Day activities in your School, lines have been drawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4m             |
|     | <ul> <li>with chalk powder at a distance of 1 m each, in a rectangular shaped ground ABCD, 100 flowerpots have been placed at a distance of 1 m from each other along AD, as shown in given figure below. Niharika runs 1/4 th the distance AD on the 2nd line and posts a green flag. Preet runs 1/5 th distance AD on the eighth line and posts a red flag.</li> <li>i Find the position (coordinates) of green flag.</li> <li>(i) Find the position (coordinates) of red flag.</li> <li>(ii) Find the distance between green and red flag.</li> <li>(iii) Find the distance between green and red flag.</li> <li>What are the coordinates of midpoint of straight line joining green and red flag?</li> </ul> |                |
| A:- | $\begin{array}{ccc} (i) & (2,25) \\ (ii) & (8,20) \\ (iii) & \sqrt{61 units} \\ & Or \\ & (5,22.5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1m<br>1m<br>2m |

| 38  | <ul> <li>A horse is tied to a peg at one corner of a square shaped grass field of side 15 m by means of a 5 m long rope.</li> <li>(i) What is the shape of area in which horse can graze?</li> <li>(ii) Find the area of that part of the field in which the horse can graze.</li> <li>(iii) Write down the formula for finding length of arc when central angle is given.<br/>Or</li> <li>Find the remaining area of field after grazing.</li> </ul> | 4m             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| A:- | (i) Quadrant of circle<br>(ii) 19.64 m <sup>2</sup><br>(iii) Angle x $2\pi r/360$<br>Or<br>205.36 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                      | 1m<br>1m<br>2m |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |

C L \_ X \_ M K \_ P R E \_ B O A R D \_ 1 \_ M A T H E M A T I C S \_ Q P \_ P a g e 12 | 12